

Dave Ingalls, EVP

Summer 2024

Schedule Analysis Best Practices for Capital Projects

Speaker Biography

- Mr. Dave Ingalls, EVP
- Augur Consulting: CEO and Co-Founder
- Certified Earned Value Professional by AACE
- 15+ years providing cost engineering and schedule analysis services to DoD and DOE
- Supports DoD and DOE providing expertise on project OAUGUR controls, schedule management, and IBR's
- Avid cyclist, data nerd, Seahawks fan, and father to two young children

Augur Introduction

Cost Analysis

- Lifecycle Cost Estimating, PPB&E Support, Program Planning
- IGCEs, Source Selections, Vendor Negotiations
- Specialized Cost Analysis: AoAs, BCAs, CAIV, Should-Cost

Schedule Analysis

- Schedule Construction and Maintenance
- Vendor Schedule Analysis, Schedule Health Assessments
- Schedule Risk Assessments, Critical Path Identification & Management

Performance Management

- Earned Value Management (EVM) Analysis
- Integrated Baseline Reviews (IBRs) & IBR Training
- Contract and Vendor Management

Emphasis on Data Science has Inspired New Techniques for Problem Solving

Augur is an SDVOSB based in the DC metro area

- Founded 2012
- Support government customers in DoD, DOE, & other government agencies
- Provide analysis aligned to 3 Core Competencies
 - Cost, Schedule, and Performance Management
 - All work is underpinned by data science capability

Table of Contents

- Problem Statement/Objective
- Section 1: Schedule Construction
- Section 2: Schedule Analysis and Management
- Section 3: Schedule Risk and Risk Mitigation Strategies
- Backup Slides

Section 1

GAO Best Practices and Schedule Construction

Problem Statement

Problem Statement

- Programs require a measurable baseline to determine program status and forecast future efforts
- Program Managers (PMs) require an understanding of what constitutes a sufficient, defendable schedule

Objective

- Outline the schedule development process from schedule construction and analysis to risk mitigation
- Define characteristics of a "good" schedule and how a PM can leverage the schedule to better track program progress

Evaluating a "good" Schedule

- Schedules (IMSs) adheres to GAO Best Practices (BPs)
 - BPs establish standards for schedule construction and maintenance
- Schedule meets thresholds for schedule construction metrics
 - Metrics can be evaluated for logic, lags/leads, constraints, slack, etc.
 - Contains no leads, Start-Finish logic, manual tasks, or hard constraints
 - Identify percentage of tasks within schedule that lack resources
- Schedule baseline is essential property of a "good" schedule Baseline establishes program's initial timeline by task
- - Leveraged to determine delta between planned vs actual timeline
 - Required in applying Earned Value (EV) to a program and its schedule

GAO Best Practices

ITERATIVE

CYCLE

Best Practices are not pass/fail; BPs should be tailored to project specific needs

Schedule Construction Scorecard

- Flags potential issues with schedule validity
- Limit use of constraints; conflicts with embedded dynamic schedule logic
- Keep short durations for tasks; break out long tasks
- Limit use of lags & keep them short; never implement a lead

Hig	
Mi	
Re	
Hard	
Invalid	
Invalio	
Ne	

Metric Scorecard (%)				
Metric		Ranges		
Logic	0-5%	6-10%	11-100%	
		% of tasks with non-FS logic		
Lags	0-5%	6-10%	11-100%	
		% of tasks with Lags		
gh Duration	0-5%	6-10%	11-100%	
	% of to	asks with a high duration (>44	days)	
issed Tasks	0-5%	6-10%	11-100%	
	% of tasks bei	ng completed after their baseli	ine finish date	
lationships	0-80%	81-90%	91-100%	
	% of tasks with a FS relationship			
BEI	0-80%	81-90%	91-100%	
	Number of Actual Tasks Completed / Number of Tasks Baselined to Comple			
Leads	0	1	.+	
		# of tasks with Leads		
l Constraints	0	1	.+	
	# of tasks with a Hard Constraint			
Forecast Dates	0	1	.+	
	# of tasks that have a projected start/finish date prior to status date and < 1			
d Actual Dates	0	1	.+	
	# of tasks with an actual start/finish after the status date			
gative Float	0	1	+	
	#	# of tasks with a Negative Floa	t	

te	
)0%	

Schedule Construction Summary

- Construction metrics should be viewed as just a starting point Metrics are a starting point for determining schedule health
- Schedules are dynamic estimates that will never be 100% correct Accuracy of the schedule is dependent on quality fundamentals
- More important for a schedule to be "good" than right There are multiple key fundamentals for a quality schedule:
 - Having a valid Critical Path

 - Realistic durations; identifying task durations requires lots of legwork Tasks have logical and reasonable dependencies Reasonable slack/float; unreasonable slack/float indicative of bad logic

Critical Path vs. Driving Path

Critical Path

- Longest continuous path leading to <u>last scheduled task</u>
- Critical Tasks = 0 days Total Slack
 Flexibility in tracking Driving Paths; should reflect priorities
- Fluid and evolving; Critical and Near-Critical tasks merit tracking
- Schedule contingency identified

Driving Path

 Focus on driving predecessors leading to <u>major milestones</u>

- Driving Path milestones may exceed last task in importance
 - Align interdependencies

Critical/Driving Path Visualization

Program Roadmap Schedule (PRS)

Presentable stakeholder format

Obstacles to Schedule Validity

Invalid Critical Path

Lack of Baseline

Unrealistic Durations

Manually-Scheduled Tasks

No Custom Calendar(s)

Issues caused by LOE tasks, constraints causing error, and dangling logic

Required as a performance benchmark & to calculate schedule execution metrics

Each task must include a duration to calculate projected start and finish dates

Creates conflict with a schedule's dynamic model; prevents tasks from auto-updating

Default calendars don't capture many nonworking days; issue on longer schedules

Best Practice Opportunity

- Question: How can we resolve schedule construction issues?
- Answer: Leveraging Integrated Baseline Reviews (IBRs)!
 - Allows for proactive analysis of schedule construction / assumptions
 - Identify schedule errors prior to baselining schedule and PMB
 - Improve accuracy of execution metrics through a healthy schedule
- IBR an opportunity to baseline & establish a good IMS
 - PM & Vendor meet to communicate for mutual understanding of plan
 - Program's planned schedule can be baselined during the IBR
 - Identify and rank potential risks that could occur during execution

Schedule Analysis and Management

Introduction to Schedule Analysis

- Critical and Driving Path(s)
 - Critical Path(s) can change; track critical & near-critical tasks Manage driving path(s) leading up to major program milestones
- Logic Issues

 - Identify out-of-sequence, incomplete, and missing/dangling logic Errors in logical dependencies can cause unreasonable float/slack
- Schedule Metrics

 - Execution Metrics provide starting point to determine IMS progress Earned Schedule is a form of EV designed for schedule evaluation
- Baseline Integrity

 - Establish baseline to conduct comparative analysis with projections Consider re-baseline if current IMS does not reflect program reality

Critical Path (CP) Analysis

- Critical path analysis key to effective schedule evaluation
 - PMs should track how critical path changes month to month
 - Highlight driving predecessors that lead to project completion
 - Track near-critical tasks; these may become critical in the future
- Confirm the critical path is valid (BP #6)
 - Objective to identify & resolve risks pushing completion date ASAP
 - Resolve LOE tasks, constraints/lags causing errors, & dangling logic
- PMs should balance critical path with driving path analysis
 - Critical paths may not capture important milestones and events
 - PMs should analyze driving paths that lead up to crucial milestones

Schedule Execution Metrics

- Execution metrics compare baseline plan to actual progress Provides insight into program progress through quantifiable data Updating IMS w/ actuals required for execution metric calculations Various metrics provide different perspectives of schedule status

 - Proper schedule construction & baseline needed for valid metrics
- Common schedule execution metrics include:
 - Baseline Execution Index (BEI) Number of tasks completed compared to the number of tasks baselined to be completed
 - Current Execution Index (CEI) Near-term accuracy of forecasts
 - Hit or Miss (HoM) Percentage of tasks completed at/before their baseline finish date. Stricter criteria compared to BEI
 - Critical Path Length Index (CPLI) Float density on critical path

Earned Schedule 101

- Earned Schedule is a variant of EVM
 - Time-based interpretation of EVM data
 - No <u>additional</u> data required for analysis
 - Yields performance index of PV vs. EV, but does not incorporate critical path
- Earned Schedule assesses Schedule Variance in a different manner
 - Compares planned time to "earn" a given value against the actual duration needed
 - Planned Value represents PMB; original plan for that work to be completed
 - Graphic depicts 10 months needed to earn 5 months of planned value

Earned Schedule Metrics

- Earned Schedule Variance (ESV):
 - Delta in time between planned vs. actual achievement of ESV
 - Highlights status of where schedule is against where it should be
- Schedule Performance Index time (SPIt):
 - ESV performance metric on a 1.0 scale useful for ES forecasting
- To Complete Schedule Performance Index (TSPI):
 - Ratio of work required to forecast complete schedule (sanity check!)
- Duration to Complete (DTC):
 - Forecast calculation for the number of months of work remaining Should decrease by one month after every month - often doesn't

Earned Schedule does not focus on critical tasks; it evaluates breadth of activities

Schedule Analysis Dashboard

Schedule Execution

Metrics

Schedule Analysis Summary

Schedule analysis has the following objectives... Construction Phase <u>Execution Phase</u>

- Adherence to GAO Best Practices
- Evaluation of Schedule Health
- Validation of Critical Path
- Resolution of construction errors and mutual buy-in of scope/time

- <u>Independent</u> assessment of current schedule progress and path forward
- Dependable forecast of outcomes
- Comparison of baseline vs. actuals
- Implementation of risk mitigations

<u>Section 3</u> Schedule Risk and Risk Mitigation Strategies

Risk & Uncertainty Overview

Risk vs Uncertainty

- Risk: Discrete events that may cause schedule overrun
- Uncertainty: Distribution of potential duration outcomes for a task
- Need to identify potential risks & uncertainty in schedule
 - Review programmatic risk registers (i.e. risk cube charts)
 - Stakeholders can provide input on risk and uncertainty
 - Run Schedule Risk Analysis (risk events to Monte Carlo simulation)
- What to do when risks occur?
 - Root Cause Analysis (RCA): identify original source of the risk
 - Risk Mitigation Strategies: develop plan to reduce risk impact
 - Provide recommendations to PM and stakeholders based on IMS

Schedule Risk Analysis (SRAs)

- Conducting a Schedule Risk Analysis (BP #8)
 - Implement risk & uncertainty into IMS to identify potential delays
 - Model risk events to represent possible discrete incidents
 - Utilize uncertainty to capture range of possible outcomes
 - Assess probabilistic schedule utilizing Monte Carlo simulation
 - Leverage probable outcomes to calculate schedule contingency
- SRAs can be conducted at varying levels of complexity
 - Implement what makes most sense for the program and schedule
 - Can be specific events in the IMS or a formal SRA
 - Basis for 'What-If' analysis & developing Courses of Action (COAs)

SRA Visualization Examples

CDF/PDF for SRA Project CV = 0.1, difference from estimate to mean = 12.2 Days (14%)

Correlation to Task Duration (%)

Risk Mitigation Strategies

- Conduct Root Cause Analysis prior to mitigation planning Identifies original friction point that led to program risk

 - Solves paradigm of "not solving a problem you don't know exists"
 - Identifies a clear relationship between risk and schedule execution
 - Leverage results to propose appropriate mitigation strategies
- Common risk mitigation strategies include:
 - Resource realignment and/or escalation
 - Eliminate superfluous tasking
 - Overtime labor / Increased Funding
 - Early procurement of long lead materials

Questions?

